Ninth International Conference on Remediation and Management of Contaminated Sediments

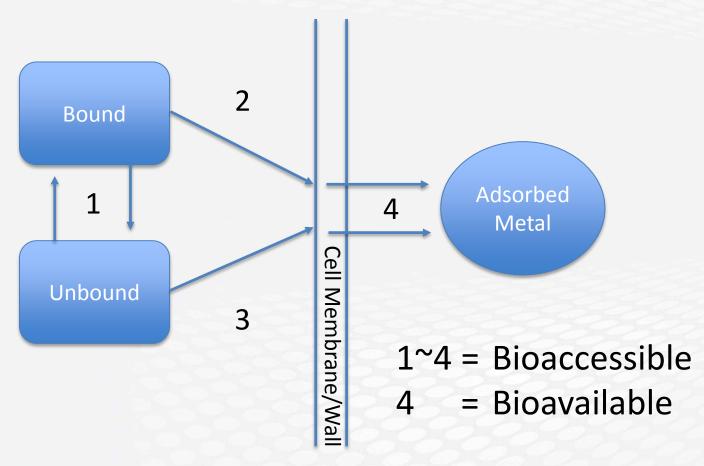
An Overview of Sequential Extraction Methods to Assess Bioavailability and Mobility of Metals in Sediments

James Fox, Russell Gerads, Ben Wozniak

What Are Selective Sequential Extractions (SSE)?

- An attempt to generally characterize the molecular forms of a contaminant of concern and/or determine under what conditions the contaminant is mobile in to the surrounding environment
- SSE not true speciation
 - Total metal concentration by fraction
 - Each fraction represents shared chemical properties

Objective of Project


- Define the data objectives
 - Mobility
 - Risk assessment
 - Fate & transport

- Different definitions out there
- Bioaccessibility generally encompasses bioavailability
- Bioavailability is what is immediately accessible for biological uptake and in an available form

Bioaccessibility vs. Bioavailability

What Procedure to Use

- What is the nature of the element?
 - Primarily exist as cationic or anionic molecular forms
- Transition metals
 - BCR, Tessier
- Element Specific (e.g. As, Se)
 - Wenzel
- Mercury
 - Bloom, EPA 3200

Cationic Procedures

Method	Steps	Fraction	Assess
Tessier	1: MgCl2 (pH 7)	Exchangeable	Bioavailable
	2: NaOAc/HOAc (pH 5)	Bound to carbonates	
	3: NH ₂ OH·HCl (pH 2)	Bound to Fe/Mn Oxides	
	4: H ₂ O ₂ , HNO ₃ (pH 2); NH ₄ OAc	Bound to organic matter	Bioaccessible
	5: HF/HClO ₄	Residual	Unavailable
BCR	1: HOAc (pH 2.85)	Exchangeable	Bioavailable
	2: NH ₂ OH·HCl (pH 2)	Reducible	
	3: H ₂ O ₂ ; NH ₄ OAc (pH 2)	Oxidizable	Bioaccessible
	'Modified' Aqua Regia	Residual	Unavailable

Cationic Procedures

Method	Steps	Fraction	Assess
Tessier Modified (Singh 1988)	1: Mg(NO ₃) ₂	Exchangeable	Bioavailable
	2: NaOAc (pH 5)	Bound to carbonates	
	3: NaOCl (pH 8.5)	Bound to organic matter	
	4: NH ₂ OH·HCl + HNO3 (pH 2)	Bound to Mn oxides	
	5: NH ₂ OH·HCl + HCl (50° C)	Bound to amorphic Fe oxides	Bioaccessible
	6: (NH_4) -oxalate + $H_2C_2O_4$ + $C_6H_8O_5$ (pH 3)	Bound to crystalline Fe oxides	
	7: HF/HClO ₄ /HCl	Residual	Unavailable

^{*}Sepahvand, H. & Forghani, A., "Comparison of Two Sequential Extraction Procedures for the Fractionation of Zinc in Agricultural Calcareous Soils." *Chemical Speciation and Bioavailability, (2012), 24(1).*

Element Specific Procedure

Method	Steps	Fraction	Assess
Wenzel (Arsenic)	1: NH ₄ SO ₄	Non-specifically sorbed	Bioavailable
	2: NH ₄ H ₂ PO ₄	Specifically sorbed	
	3: NH ₂ OH·HCl (pH 2)	Amorphous and poorly- crystalline hydrous oxides	Bioaccessible
	4: NH ₄ ⁺ -oxalate, (dark, pH 3.25)	Well-crystallized hydrous oxides of Fe and Al	
	5: HNO ₃ /H ₂ O ₂	Residual	Unavailable

Hg Procedures

Method	Steps	Fraction	Assess
Bloom (Mercury)	1: DI H2O	Water soluble	Bioavailable
	2: HCI/HOAc (pH 2)	Weak acid	
	3: KOH	Organo complexed	Bioaccessible
	4: HNO ₃	Strongly complexed	
	5: Aqua regia	Mineral-bound	Unavailable
EPA 3200	1: HNO ₃ or HCI/EtOH	Extractable Organic	Bioavailable
	2: SCF - HCI/NaCl eluent	Extractable Inorganic	
	3: HNO ₃	Semi-mobile	Bioaccessible
	4: Aqua regia	Non-mobile	Unavailable

Other Procedures and Considerations

- Many other published and project-specific SSE procedures exist
- Generally based upon Tessier, BCR, or Wenzel
- Scientific application of these procedures to another element requires years of experimentation
- Optimized for specific environments/purposes
 - Pretty much all SSE procedures based on oxygen

Sampling Technique

EPA paper by Richard Wilkin*

- Anoxic sample handling for subsurface soil/sediments required
- Freezing samples with dry ice for shipment to laboratory
- Anaerobic glove box handling during preparation of samples

Ground Water Issue

Mineralogical Preservation of Solid Samples Collected from Anoxic Subsurface Environments

Richard T. Wilkin

Background

Remedial technologies utilized at hazardous waste dates for the restaured ordered and metabolic contentiants of metabolic contentiants of metabolic contentiants of metabolic contentiants of metabolic metabolic metabolic contentiants of metabolic metabolic

The preservation method evaluated and recommended here is colds collected from anouce environments involves sample freez colds collected from anouce environments involves sample freez colds collected from anough the collected freez colds and anough the collected freez colds and suffur-bearing compounds, which are typically predominar endow-enables fronganic constituents in environmental material and are important in controlling contaminant behavior at hazardous colds and suffur-bearing compounds, which are typically predominate lake and compared to identify contaminant behavior at hazardous cold on preserved anough several colds and compared to identificat measurements on sample spills which no preservation protocol was adopted, i.e., the unpreserve samples were allowed to outdoor in arbitert at: An analysis of the colds and anough the c

U.S. Environmental Protection Agency, National Risk Manament Research Laboratory, Ground Water and Ecosyster Restoration Division, 919 Kerr Research Drive, Ada, OK 748 (wilkin.rick@epa.gov) with information necessary for preparing sampling plans to supout site characterization, remedy selection, and post-remedial

For further information contact Richard T. Wilkin (580) 436-8874 at the Ground Water and Ecosystems Restoration Division of the National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Add Chlaboration

ntroduction

Solid phase samples may be collected for physical, chemical, solid phase samples may be collected for physical, chemical performance monitoring studies. The principal objection of any sample biological tests claim gate department of the property of the p

**Redout-sensible elements commonly important in environmental intuities include from manageness, safur, continuino, coppor, and manageness, and continuino, coppor, and manageness, and continuino, coppor, and redoutation conditions processes involving from and safur compounds, in particular, have significant impacts must be considered when continuing and the safur processes involving from and safur compounds of the continuing and continu

*Wilkin, R. "Mineralogical Preservation of Solid Samples Collected from Anoxic Subsurface Environments." EPA National Service Center for Environmental Publications (2006)

https://nepis.epa.gov/Exe/ZyPDF.cgi/600003I1.PDF?Dockey=600003I1.PDF

Single Extraction Bioaccessibility Procedures

EPA Method 1340

In vitro bioaccessibility assay (IVBA) for Pb

Targeted steps from multi-step procedures

- F4 from Bloom for elemental Hg (discard F1~3)
- F3 Tessier or F2 BCR for "total bioavailability" (not discarding previous fractions)

California LUFT method

Organic lead

Other Techniques

Complementary techniques for insoluble molecular

forms

- XANES
- SEM-EDS

Speciation in conjunction with SSE (soluble forms)

- 1st steps only
- Must avoid molecular conversion

^{*}Image from Solanki, P. and Zaman, M., "Mircrostructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers." Ch. 38 of Scanning Electron Microscopy; book edited by Viacheslav Kazmiruk, ISBN 978-953-51-0092-8, Published: March 9, 2012 under CC BY 3.0 license.

References

- Tessier, et al., "Sequential Extraction Procedure for the Speciation of Particulate Trace Metals." Analytical Chemistry 51 (1979) 844 – 851 http://www.dim.uchile.cl/~lsaavedr/archivos/joseline/pdf/Tessier-1979-Sequential%20Extraction%20Procedure%20for%20the%20Speciat.pdf
- Pueyo, et al., "Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb, and Zn in a freshwater sediment following a collaboratively tested and optimized three-step sequential extraction procedure." *Journal of Environmental Monitoring* 3 (2001) 243-250.
 http://pubs.rsc.org/en/Content/ArticleLanding/2001/EM/B010235K#!divAbstract
- Wenzel, et al. "Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure." Analytica Chimica Acta 436 (2001) 309-323
 - https://www.researchgate.net/publication/222296673_Arsenic_fractionation in_soils_using_an_improved_sequential_extraction_procedure

References

- Committee on Bioavailability of Contaminants in Soils and Sediments, National Research Council. *Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications;* National Academies Press: Washington, D.C., 2003. https://www.nap.edu/catalog/10523.html
- McGeer, et al. "Issue Paper on the Bioavailability and Bioaccumulation of Metals." USEPA Risk Assessment Forum, August, 19, 2004. Prepared by: Easter Research Group, Inc. Lexington, MA. https://www.epa.gov/sites/production/files/2014-11/documents/bio_final.pdf

References

- Semple, et al., "Defining Bioavailability and Bioaccessibility of Contaminated Soil and Sediment is Complicated." *Environmental Science* & *Technology* 38 (2004) 229A – 231A. http://pubs.acs.org/doi/pdf/10.1021/es040548w
- ITRC, "Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites." February, 2011.
 http://www.itrcweb.org/contseds-bioavailability/index.htm
- USEPA Method 1340, "In Vitro Bioaccessibility Assay for Lead in Soil." Rev. 0, November 2013. https://www.epa.gov/sites/production/files/2015-12/documents/1340.pdf
- USEPA Method 3200, "Mercury Species Fractionation and Quantification by Microwave Assisted Extraction, Selective Solvent Extraction and/or Solid Phase Extraction." Rev. 1, July 2014. https://www.epa.gov/sites/production/files/2015-12/documents/3200.pdf

The Team at Brooks Applied Labs

